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Background
• Increasing interest on estimation of model reliability in

genomic evaluations:
• Differences exist: range from pedigree accuracy to accuracy of full

progeny test
• Reliability is needed as weights for international genomic

evaluations

• GBLUP: the model based reliability is computed through
inversion of MME

• If G−1 can be formed then also (MME)−1 can be done (MME is
size genotyped animals)

• In the future genomic evaluations are mostly based on
single-step BLUP (ssGBLUP)

• Exact model based reliability estimation requires to invert a matrix
of size all animals

• approximations have been suggested by Misztal et al. 2013 based
on added genomic information into MME
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Background
Estimation of reliability for single-step model

• Nordic genomic evaluations: DGV1 and pedigree are combined
using bivariate blending

• Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV
as a correlated trait w. 100% accuracy, with a correlation of√

R2
DGV to “trait”

• Original bivariate blending was revised for this study (as will be
presented)

• We wanted to compare model based reliability computed from
the full inverse of MME using models:

• animal model BLUP (AM-BLUP)

• single-step BLUP (ssGBLUP)

• bivariate blending using GBLUP (bbGBLUP)

1Direct Genomic Value
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Model reliability: y = Xb+Zu+e
Inverse of the coefficient matrix of the MME:

C−1 =

[
Cb,b Cb,u

Cu,b Cu,u

]
=

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+V−1

u

]−1

AM-BLUP: V−1
u = 1

σ2
u

A−1

ssGBLUP: V−1
u = 1

σ2
u

[
A−1 +

[
0 0
0 G−1− (A22)

−1

]]
where

• A= pedigree based relationship matrix
• G= genomic relationship matrix
• A22= pedigree based relationships of genotyped animals

Reliability for animal i :

r2
i = 1− {C

u,u}i
σ2

u

where {Cu,u}i is diagonal element corresponding animal i .
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Steps in bivariate blending bbGBLUP
• Step 1: get reliabilities from AM-BLUP⇒ r2

EBV

• Step 2: reliability increase due to genotypes
• EDC2 for all genotyped animals:

• bull EDC based on non-genotyped daughters
• cow EDC is σ2

e r2
o

σ2
u (1−r2

o )
where r2

o = individual Interbull reliability

• get reliabilities from GBLUP⇒ r2
DGV

• use EDC from as weight in GBLUP

• calculate relative increase in evaluation accuracy due to GBLUP
for genotyped animals:

EDCG =
r2
DGV

1− r2
DGV

−
r2
EBV

1− r2
EBV

• calculate accuracy of added value due to DGV:

ra =

√
1− 1

EDCG +1

2Effective Daughter Contribution
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bbGBLUP continued

• Step 3:
• bivariate blending model by random regression AM-BLUP:

y = Xb+K1u1 +K2u2 +e

Solutions in u1 have GEBV.

• Values in design matrices K and weights depend on type of the
observation. When observation is:

• same DRP as in AM-BLUP[
k1 k2

]
=
[

1 0
]
, weights same as in AM-BLUP

• genomic estimate DGV from GBLUP:[
k1 k2

]
=
[ √

r2
a

√
1− r2

a

]
, weights very large (1000)

• Variances: Var(ui ) = σ2
u A, i = 1,2 where σ2

u is from AM-BLUP.
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Data

• Study data was extracted from the production trait evaluation
of Nordic Red dairy cattle

• For simplicity deregressed proofs (DRP) were assumed
• NOTE: actual phenotypic data (DRP) were not used ! Only the

EDCs and pedigree

• We assumed h2 = 0.50

• Genotype information: after edits, 38194 SNPs from
BovineSNP50
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Numbers
• Genotyped animals:

• Training animals: genotyped bulls born 2001-2005
• Candidates: genotyped animals born 2006-

• Number of training bulls (genotyped): 1055

• Daughters (w. records) to the training bulls were searched
• “Best” 522 bulls: 40 daughters
• “Average” 533 bulls: 10 daughters
• Total number of daughters for these bulls 26060

• Number of candidate animals (genotyped): 1830
• 607 candidate bulls
• 1223 candidate cows w. records

• Pedigree for all above animals were traced but limited to 2
generations→ 73579 animals in AM-BLUP

• From which 67648 cows with records
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Summary of Setup

• Three methods:
• Animal model
• Single-step
• Bivariate blending

• Five animal groups examined:
• Genotyped:

• Training bulls
• Candidate bulls
• Candidate cows

• Non-genotyped: (not interested, skipped)
• bulls
• cows

• Comparing reliabilities
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Results: Animal model vs. Single-step
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Results: Animal model vs. Bivariate blending
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Conclusions

• Bivariate blending was computationally lighter than Single-step
in reliability calculation due to better sparsity — and can use
standard software used for AM-BLUP

• Genomic reliabilities in single-step GBLUP increased — due to
genomic information

• also in bivariate blending

• In general bivariate blending reliability estimates were lower than
single-step

• Bivariate blending avoided double counting of relationship
information⇒ uses less information
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